# Funktion merge() ----- example("merge") plot(Petal.Width ~ Petal.Length, data = iris, pch = 16, col = iris$Species) unique(iris$Species) Farben <- data.frame( Farbe = c("orange", "darkgreen", "blue"), Art = c("setosa", "versicolor", "virginica")) iris <- merge(iris, Farben, by.x = "Species", by.y = "Art") plot(Petal.Width ~ Petal.Length, data = iris, pch = 16, col = iris$Farbe) legend("bottomright", legend = Farben$Art, pch = 16, col = Farben$Farbe) text(2, 2, labels = "Farbe in RGB", col = rgb(220, 76, 24, maxColorValue = 255)) data(iris) Farben <- data.frame( Farbe = c("orange", "darkgreen"), Art = c("setosa", "versicolor")) iris <- merge(iris, Farben, by.x = "Species", by.y = "Art") data(iris) iris <- merge(iris, Farben, by.x = "Species", by.y = "Art", all = TRUE) # Entscheidungsbaum ----- download.file(url = "https://rstats.kamapu.net/Ressourcen/Dateien/KursDateien.zip", destfile = "KursDateien.zip") unzip("KursDateien.zip", overwrite = TRUE) unlink("KursDateien.zip") titanic <- readRDS("titanic.rds") head(titanic) boxplot(fare ~ pclass, data = titanic) boxplot(sibsp ~ sex, data = titanic) summary(titanic) # Ein Paket muss installiert werden install.packages("rpart.plot") library(rpart) library(rpart.plot) survival <- rpart(survived ~ pclass + sex + age + parch + sibsp + fare, data = titanic, method = "class") survival rpart.plot(survival) prp(survival) # https://fderyckel.github.io/machinelearningwithr/trees-and-classification.html browseURL("https://fderyckel.github.io/machinelearningwithr/trees-and-classification.html") sample(letters, 3) set.seed(42) sample(letters, 3) set.seed(123) sample(letters, 3) sample(letters, 3) # HILFE! ---- # Ich rufe einen Freund/eine Freundin an ?mean ?ggplot ??ggplot